

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 6263-6266

Tetrahedron Letters

Radical cyclizations in 1,4-dimethylpiperazine

Hiroyuki Ishibashi,^{a,*} Shigeki Haruki,^a Masahiko Uchiyama,^a Osamu Tamura^b and Jun-ichi Matsuo^a

^aDivision of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

^bShowa Pharmaceutical University, 3-3165 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan

Received 10 May 2006; revised 23 May 2006; accepted 24 May 2006 Available online 18 July 2006

Abstract—*N*-Allylic or *N*-vinylic α, α, α -trichloroacetamides, upon heating in 1,4-dimethylpiperazine, undergo radical cyclization to give the corresponding γ -lactams.

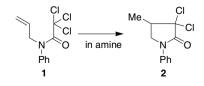
© 2006 Elsevier Ltd. All rights reserved.

Much interest has been shown in radical cyclizations for the synthesis of a variety of carbo- and heterocyclic compounds, including natural products.¹ A combination of a radical initiator such as AIBN [azobis(isobutyronitrile)] and a hydrogen donor such as Bu₃SnH has frequently been used for radical reactions. There are, however, some disadvantages in using Bu₃SnH such as its toxicity and the difficulty of product purifications. Therefore, several substitutes for the use of Bu₃SnH have been studied in recent years.²

Herein we report that radical cyclization of *N*-allylic and *N*-vinylic α, α, α -trichloroacetamides can be performed by heating in 1,4-dimethylpiperazine (1,4-DMP) used as a solvent to give the corresponding γ -lactams in good yields.

Organic amines are known to work as electron donors in single electron transfer (SET) reactions, and they have been used for reductive dehalogenation of α -halo carbonyl compounds; that is, *N*,*N*-dimethylaniline,³ 1,3-dimethyl-2-phenylbenzimidazoline (DMBI),⁴ 1-benz-yl-1,4-dihydropyridines,⁵ morpholine⁶ and 1,8-diazabi-cyclo[5.4.0]undec-7-ene (DBU)⁷ have been employed for dehalogenation via a radical mechanism. However, no example was reported for the formation of radical cyclization product even when appropriate radical acceptors were tethered to the molecules, except for the case of

Keywords: *N*-allylic α, α, α -trichloroacetamide; Anion radical; 1,4-Dimethylpiperazine; Radical cyclization; Single electron transfer.


* Corresponding author. E-mail: isibasi@p.kanazawa-u.ac.jp

0040-4039/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.05.146

photoirradiation in the presence of triethylamine and alkyl bromides.⁸

As an initial study for the cyclization, *N*-allylic α , α , α -trichloroacetamide **1** was heated in boiling triethylamine for 30 min but gave no reaction product. A similar treatment in boiling tripropylamine, however, afforded **2** in 2% yield along with the starting material **1** (82%) (Scheme 1). On the other hand, when compound **1** was treated in boiling cumene, the boiling point of which (155 °C) is almost the same as that of tripropylamine (156 °C), no cyclization product was obtained after 90 min of heating. These results strongly suggested that the cyclization of **1** giving **2** would proceed by heating in amine having a high boiling point.

We next examined the cyclization of 1 in boiling amine in more detail (Table 1). When compound 1 was heated in a secondary amine such as dibutylamine (bp: 159 °C) for 30 min, the cyclization product 2 was obtained in 44% yield (entry 3). The use of a primary amine such as heptylamine (bp: 157 °C) gave a complex mixture of products (entry 4). A cyclic secondary amine such as piperidine gave an undesired compound 3 (34% yield)

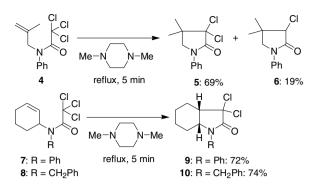
Scheme 1. Cyclization of 1.

Entry	Amine	Вр	Time (min)	Yield of 2^a (%)
1	Et ₃ N	89	30	0 (97)
2 3	Pr ₃ N	156	30	2 (82)
3	Bu ₂ NH	159	30	44 (32)
4	CH ₃ (CH ₂) ₆ NH ₂	157	30	—
5	NH	106	20	34 ^b (0)
6	NMe	106	90	18 (77)
7	0 NMe	116	90	46 (33)
8	MeNNMe	133	2	75 (0)
9	Me NN-Me Me	162	90	2 (0)
10	N N N	122	30	17 (32)
11		145	30	26 (58)

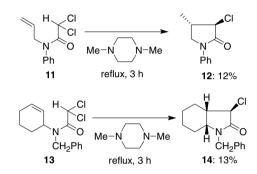
Table 1. Reaction of 1 in boiling amines

^a Numbers in parentheses are % yields of the starting material.

^b Yield of compound **3**.


(entry 5), which might be formed from 2 since compound 3 was obtained in 79% yield by treating 2 in boiling piperidine for 30 min. Of the cyclic tertiary amines examined (entries 6–9), 1,4-dimethylpiperazine (1,4-DMP) (bp: 133 °C) was found to be best for the cyclication of 1 (entry 8). The reaction of 1 in boiling 1,4-DMP was completed within 2 min to give product 2 in 75% yield. Acyclic diamines such as tetramethylethylene-diamine and tetramethylpropanediamine gave product 2 in poor yields (entries 10 and 11).

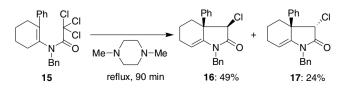
The effects of reaction temperature in 1,4-DMP on the cyclization of 1 were next examined in more detail. When the cyclization of 1 was carried out at 100 °C instead of at reflux (at 133 °C for 2 min, entry 8 in Table 1), compound 2 was obtained in 77% yield after 15 min of heating. Treatment of 1 at 65 °C also gave 2 in 81% yield after 120 min of heating.⁹ These results strongly indicate that product 2 was labile at a high temperature and that the cyclization of 1 took place at a relatively low temperature when 1,4-DMP was used as a solvent. Unfortunately, at a lower temperature such as room temperature, no cyclization of compound 1 occurred.


However, surprisingly, the cyclization of 1 occurred at room temperature by using dimethyl sulfoxide (DMSO) as a co-solvent. When compound 1 was treated in a 1:1 mixture of 1,4-DMP and DMSO at room temperature for 6 h, compound 2 and the dechlorinated product 11 were obtained in 50% and 17% yields, respectively, along with the starting material 1 (13%).

Nitromethane, acetonitrile, or dimethyl formamide could also be used as a co-solvent to give almost the same result as that obtained when DMSO was used. However, no reaction occurred when dichloromethane or benzene was used as a co-solvent. These results suggest that the cyclization of 1 at room temperature can occur only when a co-solvent having a high dielectric constant is used.¹⁰

The cyclization of *N*-allylic acetamide **4** also proceeded smoothly for 5 min in 1,4-DMP at reflux to give compound **5** and the partially dechlorinated compound **6** in 69% and 19% yields, respectively (Scheme 2). *N*-(Cyclohex-2-eny-1-yl)acetamides **7** and **8** gave the corresponding cyclization products **9** and **10** in 72% and 74% yields, respectively.

Scheme 2. Reactions of 4, 7 and 8.



Scheme 3. Reactions of 11 and 13.

N-Allylic α, α -dichloroacetamides were also found to give the desired products, but the cyclization was sluggish. Compound **11** in 1,4-DMP gave **12**¹¹ in 12% yield along with a considerable amount of the starting material (80%) after 3 h of heating (Scheme 3). Under similar conditions, compound **13** gave **14** in 13% yield along with the starting material (69%). The ¹H NMR spectra of compound **14** showed it to be a single stereoisomer. The orientation of its chlorine atom and the hydrogen atom at C-3a was tentatively assigned to be *cis* in the same manner as **12**.

Finally, when *N*-vinylic acetamide **15** was heated in 1,4-DMP for 90 min, 5-*endo-trig* radical cyclization products 16^{12} and 17^{12} were obtained in 49% and 24% yields, respectively (Scheme 4).

In conclusion, radical cyclization of *N*-allylic or vinylic trichloroacetamides proceeded smoothly in 1,4-DMP. Neither heavy metals (Sn, Ni,¹³ Mn,¹⁴ etc.) nor photochemical conditions were required in the present radical reactions. Furthermore, easy purification of cyclized products was realized by the use of volatile 1,4-DMP. Elucidation of mechanistic problems for the radical

Scheme 4. Reaction of 15.

cyclizations, and application of this method to the synthesis of a variety of cyclic compounds are under intense investigation.

Acknowledgments

The present work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet. 2006.05.146.

References and notes

- For reviews, see: (a) Giese, B. In Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds; Pergamon: New York, 1986; (b) Curran, D. P. Synthesis 1988, 417, and 489; (c) Curran, D. P. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, pp 779-831; (d) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237; (e) Naito, T. Heterocycles 1999, 50, 505; (f) Renaud, P.; Sibi, M. P. In Radicals in Organic Synthesis; Wiley-VCH: Weinhaeim, 2001; (g) Bowman, W. R.; Cloonan, M. O.; Krintel, S. L. J. Chem. Soc., Perkin Trans. 1 2001, 2885; (h) Ishibashi, H.; Sato, T.; Ikeda, M. Synthesis 2002, 695.
- For reviews, see: (a) Baguley, P. A.; Walton, J. C. Angew. Chem., Int. Ed. 1998, 37, 3072; (b) Studer, A.; Amrein, S. Synthesis 2002, 835; For recent references, see: (c) Martin, C. G.; Murphy, J. A.; Smith, C. R. Tetrahedron Lett. 2000, 41, 1833; (d) Jang, D. O.; Cho, D. H.; Chung, C.-M. Synlett 2001, 1923; (e) Bowman, W. R.; Krintel, S. L.; Schilling, M. B. Org. Biomol. Chem. 2004, 2, 585; (f) Vaillard, S. E.; Ostigo, V. A.; Rossi, R. O. J. Org. Chem. 2004, 69, 2037; (g) Miura, K.; Ootsuka, K.; Hosomi, A. Synlett 2005, 3151A.
- 3. Giumanini, G. A. Chimia 1967, 21, 464.
- (a) Chikashita, H.; Ide, H.; Itoh, K. J. Org. Chem. 1986, 51, 5400; (b) Tanner, D. D.; Chan, J. J. J. Org. Chem. 1989, 54, 3842.
- Dittmer, D. C.; Lombardo, A.; Batzold, F. H.; Greene, C. S. J. Org. Chem. 1976, 41, 2976.
- Simig, G.; Lempert, K.; Toth, G. Acta Chim. Hung. 1985, 118, 309.
- Naito, T.; Saito, S.; Ueda, M.; Miyata, O. *Heterocycles* 2005, 65, 1857.
- Cossy, J.; Ranaivosata, J.-L.; Bellosta, V. Tetrahedron Lett. 1994, 35, 8161.
- Typical procedure (2): N-Allyl-2,2,2-trichloroacetanilide

 (1) (141 mg, 0.5 mmol) was added to 1,4-dimethylpiperazine (2 ml), and the solution was heated at 65 °C for 120 min. The solvent was removed and the residue was chromatographed on silica gel (hexane/AcOEt = 4:1) to afford 3,3-dichloro-4-methyl-1-phenylpyrrolidin-2-one (2) (99 mg, 81% yield).
- It has been reported that SET reaction from a secondary amine to [60]fullerene can be promoted by addition of DMSO to the reaction mixture Isobe, H.; Tanaka, T.; Nakanishi, W.; Lemiegre, L.; Nakamura, E. J. Org. Chem. 2005, 70, 4826.

- 11. Sato, T.; Wada, Y.; Nishimoto, M.; Ishibashi, H.; Ikeda,
- M. J. Chem. Soc., Perkin Trans. 1 1989, 879.
 12. Ishibashi, H.; Kodama, K.; Higuchi, M.; Muraoka, O.; Tanabe, G.; Takeda, Y. Tetrahedron 2001, 57, 7629.
- (a) Cassayre, J.; Zard, S. Z. Synlett **1999**, 501; (b) Cassayre, J.; Dauge, D.; Zard, S. Z. Synlett **2000**, 471.
 Gilbert, B. C.; Kalz, W.; Lindsay, C. I.; McGrail, Parsons
- A. F.; Whittaker, D. T. E. J. Chem. Soc., Perkin Trans. 1 2000, 1187.